El primer molino terrestre superconductor se gesta en Barcelona

EL PERIÓDICO, DOMINGO, 12 DE FEBRERO DEL 2017 MICHELE CATANZARO

El cambio primordial en un molino superconductor está en el generador. “En lugar de cobre y hierro en su interior hay cintas de segunda generación, unos filamentos superconductores”, explica Xavier Obradors, director del Icmab. No solo los filamentos no pierden energía, sino que tampoco se calientan, por lo que no se necesita la maquinaria de enfriamiento que precisan los metales tradicionales.

Es cierto que hay que enfriarlos para que sean superconductores, pero los investigadores han diseñado un sistema eficiente que implica menos energía.

ARTICULO COMPLETO

Dissemination Links about the “Superconducting wind generator” developed in our research group

Welcome to Hailin Wang!

Hi everyone! My name is Hailin Wang. I’m from China. I have a master degree in Inorganic Chemistry, and I come to ICMAB to do my PhD about functional oxide thin films under the supervision of Dr. Narcis Mestres and Dr. Benjamin Martinez.
In my spare time, I like reading, travelling and bicycling.

The CSIC Institutes of Materials Science of Barcelona and Aragón together with Gamesa Innovation and Technology develop the first prototype of an electric Superconducting generator for medium power wind turbines (2MW)

• The prototype is the first in the world to be used in medium-power wind turbines. • The use of Superconducting materials simplifies the system obtaining greater reliability and greater efficiency thus reducing maintenance needs. • This breakthrough opens the way to a new conception of wind turbines and offers a new perspective to the wind energy industry. Monday, December 12, 2016. Gamesa Innovation and Technology, a leading Spanish technology company in the wind energy industry, the Institute of Materials Science of Barcelona (ICMAB-CSIC) and the Institute of Materials Science of Aragón (ICMA-CSIC), partially funded by the Spanish Ministry of Economy and Competitiveness (Retos Colaboración RTC-2014-1740-3), have successfully completed the first phase of development of the first medium speed Superconducting generator to be used in conventional medium power wind turbines (2MW). It is a generator that, being built using Superconducting materials, can rotate at a lower rotation speed (one third of the usual) thus reducing the weight of the multiplier gearbox significantly as well as the inertia of the system simplifying and lightening all the mechanical assembly or drivetrain and the structure itself. The electric Superconducting generator is the result of an innovative architecture with a lower use of cooper and an iron-less magnetic circuit which results in a greater efficiency and, consequently, a much lower generation of heat thus drastically reducing cooling requirements. The advantages of this new type of electric generator that uses Superconducting materials compared to the conventional generators are diverse: it simplifies the entire mechanical structure of the wind turbine as well as the electronic system; simplifies assembly and maintenance, reduces the risk of breakdowns; the time of intervention for maintenance is extended; and, in the near future, the cost will be reduced according to the rapid evolution of Superconducting materials. The future implementation of this type of electric Superconducting generator in the wind turbines opens a new perspective to the wind energy industry, making windmills more efficient and robust and reducing the costs of energy production. After four years of intense collaboration between the three entities, the culmination of the first phase of the project in early 2016 with the successful construction of this prototype and the corresponding trials has become a clear success case of Technology Transfer from research in superconducting materials to its possible applications in the generation of wind energy. ICMAB-CSIC, ICMA-CSIC and Gamesa Innovation and Technology continue to collaborate in order to carry out field trials to offer new innovative technological solutions in this sector.

Dr. Luisa CHIESA_ICMAB Lecture_8th NOVEMBER

Dear friends and colleagues,
It is a pleasure for us invite you to the ICMAB Lecture entitled:
High temperature superconductors: how do we go from a single HTS tape to its deployment in high-field magnets and large scale applications? By Dr. Luisa CHIESA Mechanical Engineering Department, Tufts University, Medford, MA, USA Date:   8th NOVEMBER Time:   12:00 h Place:  ICMAB Meeting room Short abstract: After 25 years of development, several high temperature superconductors (HTS) are becoming engineering materials commercially available in long-length wires. Those conductors are capable of carrying enormous electrical current in strong magnetic fields while meeting various other challenges. Such characteristics enable the construction of a broad spectrum of devices useful for basic science, medicine, and energy. In this talk, the state-of-art manufacturing, properties and challenges of key HTS conductors will be discussed with particular focus on REBCO coated conductors. The electrical, magnetic, and mechanical properties and failure mechanisms important for constructing devices will be discussed and examples of large scale projects employing those materials will be given to illustrate the positive impact those new materials could have in future generation’s magnets. Further details will be given to HTS tape cabling methods for these magnet applications. To improve fabrication methods and maximize operational performance of these cables, it is necessary to characterize both the electromechanical behavior of the full scale cables and of the individual tapes under anticipated thermal, mechanical and electromagnetic loads. Some laboratory experimentation and structural finite element analysis (FEA) that have been used to investigate the electromechanical behavior of single HTS tapes and Twisted Stacked-Tape Cable (TSTC) conductors will be discussed. The numerical and experimental results discussed in this talk, provide important details about the strain dependence of the critical current for various load types expected during high field magnet operations. Short bio— Luisa Chiesa is an associate professor at Tufts University. Before joining the faculty at Tufts in 2009, Dr. Chiesa received her Ph.D. in Nuclear Science and Engineering at MIT and her bachelor in Physics from the Universita’ Statale in Milan (Italy). Dr. Chiesa worked in the field of superconducting magnets for the past 15 years. After a year as a visiting student at Fermilab working on quench protection for the LHC quadrupoles, she joined the Superconducting Magnets group at LBNL where she was heavily involved in the experimental characterization of high field superconducting magnets. Currently, her primary research area is the electro-mechanical characterization of low temperature and high temperature superconductors for large magnets used in high-energy physics and fusion power devices. In particular her laboratory specializes in experimental and numerical techniques to characterize the critical current of superconducting strands, tapes and cables under different mechanical loading conditions. Dr. Chiesa is an active member of the IEEE Council on Superconductivity and serves as technical editor on the IEEE Transaction on Applied Superconductivity journal and as board member of major conferences in the field of superconductivity. If you would like to arrange a meeting with her please contact: Prof. Teresa PUIG (teresa.puig@icmab.es) or Dr. Mar TRISTANY (mtristany@icmab.es)

Thesis Alba Garzón

twitter Congratulation to Alba Garzón for obtaining her PhD! Tittle: SYNTHESIS OF METAL OXIDE NANOPARTICLES FOR SUPERCONDUCTING NANOCOMPOSITES AND OTHER APPLICATIONS Abstract: Thermal and microwave methodologies are used to synthesize different metal oxides nanoparticles such as magnetite (Fe3O4) and cerium oxide (CeO2). By modifying the precursors (Fe(R2diket)3 (R= Ph, tBu and CF3), Ce(acac)3 and Ce(OAc)3), and following the same synthetic route, it is possible to control the size and shape of the nanocrystals obtained. The general route is carried out in triethylene glycol (TREG) or benzyl alcohol (BnOH) media, due to its high boiling point and, which acts also as a capping ligand of the nanoparticles, stabilizing them in polar solvents. Nanoparticles have been characterized by several common physical laboratory techniques: High Resolution Transmission Electron Microscopy (HR TEM), infrared spectroscopy (IR), X-ray Powder Diffraction (XRPD), magnetometry via Superconducting Quantum Interference Device (SQUID), Nuclear Magnetic Resonance (RMN), Gas Chromatography-Mass Spectroscopy (GC-MS), X-ray Photoelectron Spectroscopy (XPS) and Thermogravimetric Analysis (TGA). With all these techniques, the final size, shape, composition, crystal structure, magnetic behaviour and capping ligand interaction have been studied, showing the high quality crystals generated. In addition, we demonstrate the high efficiency of all two one-pot methodologies optimized to synthesize different families of nanoparticles in a reproducible way. The stable colloidal solutions obtained in methanol have been used to generate new nanocomposite YBa2Cu3O7-δ (YBCO) superconducting layers by the preformed nanoparticles (ex-situ) approach. The YBCO nanocomposite layers present enhanced magnetic properties. Finally, a new application as an antioxidant behaviour in human cells is tested for the case of CeO2 nanoparticles due to their specifically properties that make them really interested in this new field. Date and place: 4th November 2016. Sala de Graus Dept. Química UAB  

Welcome to Pengmei Yu!

pengmeiyu ¡Hola todos, Soy Pengmei Yu de China, y un placer conoceros! My background is light chemical engineering, and I’ll be working here for my PhD degree for the next 4 years, under the supervision of Dr. Mariona Coll. In my spare time, I like to do some readings, listening to music, playing badminton and hiking.

Summer 2016: Ferran Vallès’ stay at ASC (Tallahassee, USA)

collage The PhD candidate Ferran Vallès has been visiting the Applied Superconductivity Center (ASC) in Tallahassee (Florida, USA) from the 3rd of August until the 5th of October under the supervision of Jan Jaroszynski, Dmytro Abraimov, Chiara Tarantini and David Larbalestier. During his stay, he has been able to evaluate CSD YBCO nanocomposites at very high magnetic fields and has had the opportunity to perform experiments up to 35T in a DC magnet in the National High Magnetic Field Laboratory (NHMFL), also located in the same campus.

4-6th October 2016: 48M EUROTAPES Meeting at Karlsruhe

The 48M consortium meeting of EUROTAPES has been taken place on the 4th-6th of October in Karlsruhe (Germany) hosted by the KIT (Karlruhe Insititute of Technology). Participants have discussed scientific activities such as high througput, scaling and nanocomposites but also quality control and life cycle approach of the project. From ICMAB: X. Obradors (EUROTAPES’ coordinator), T. Puig, S. Ricart, A. Palau, M. Tristany, C. Pop, B. Mundet, Z. Li have been participated. Eurotapes Group Photo

Institut de Ciència de Materials de Barcelona ICMAB CSIC

Address

Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
+34 935 801 853 ext 371 
hr_suman@icmab.es